Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 146: 102495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460493

RESUMO

In about 1% of tuberculosis (TB) patients, Mycobacterium tuberculosis (M. tuberculosis) can disseminate to the meninges, causing tuberculous meningitis (TBM) with mortality rate up to 60%. Chronic granulomatous inflammation (non-necrotizing and necrotizing) in the brain is the histological hallmark of TBM. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) and the generated kynurenine metabolites exert major effector functions relevant to TB granuloma functioning. Here we have assessed immunohistochemically IDO1 expression and activity and its effector function and that of its isoform, IDO2, in post-mortem brain tissue of patients that demised with neurotuberculosis. We also related these findings to brain tissue of fatal/severe COVID-19. In this study, IDO1 and IDO2 were abundantly expressed and active in tuberculoid granulomas and were associated with the presence of M. tuberculosis as well as markers of autophagy and apoptosis. Like in fatal/severe COVID-19, IDO2 was also prominent in specific brain regions, such as the inferior olivary nucleus of medulla oblongata and cerebellum, but not associated with granulomas or with M. tuberculosis. Spatially associated apoptosis was observed in TBM, whereas in fatal COVID-19 autophagy dominated. Together, our findings highlight IDO2 as a potentially relevant effector enzyme in TBM, which may relate to the symptomology of TBM.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , COVID-19 , Granuloma , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação , Mycobacterium tuberculosis/metabolismo , Triptofano , Tuberculose Meníngea/metabolismo , Tuberculose Meníngea/patologia
2.
Genet Med ; 26(6): 101104, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38411040

RESUMO

PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.

3.
Cell Rep Med ; 5(1): 101372, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232697

RESUMO

Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Repouso em Cama/efeitos adversos , Músculo Esquelético/metabolismo , Metabolismo Energético/fisiologia , Glicogênio/metabolismo
4.
Res Pract Thromb Haemost ; 7(7): 102213, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38077825

RESUMO

Background: Alterations in platelet function have been implicated in the pathophysiology of COVID-19 since the beginning of the pandemic. While early reports linked hyperactivated platelets to thromboembolic events in COVID-19, subsequent investigations demonstrated hyporeactive platelets with a procoagulant phenotype. Mitochondria are important for energy metabolism and the function of platelets. Objectives: Here, we sought to map the energy metabolism of platelets in a cohort of noncritically ill COVID-19 patients and assess platelet mitochondrial function, activation status, and responsiveness to external stimuli. Methods: We enrolled hospitalized COVID-19 patients and controls between October 2020 and December 2021. Platelets function and metabolism was analyzed by flow cytometry, metabolomics, glucose fluxomics, electron and fluorescence microscopy and western blot. Results: Platelets from COVID-19 patients showed increased phosphatidylserine externalization indicating a procoagulant phenotype and hyporeactivity to ex vivo stimuli, associated with profound mitochondrial dysfunction characterized by mitochondrial depolarization, lower mitochondrial DNA-encoded transcript levels, an altered mitochondrial morphology consistent with increased mitochondrial fission, and increased pyruvate/lactate ratios in platelet supernatants. Metabolic profiling by untargeted metabolomics revealed NADH, NAD+, and ATP among the top decreased metabolites in patients' platelets, suggestive of energy metabolism failure. Consistently, platelet fluxomics analyses showed a strongly reduced utilization of 13C-glucose in all major energy pathways together with a rerouting of glucose to de novo generation of purine metabolites. Patients' platelets further showed evidence of oxidative stress, together with increased glutathione oxidation and synthesis. Addition of plasma from COVID-19 patients to normal platelets partially reproduced the phenotype of patients' platelets and disclosed a temporal relationship between mitochondrial decay and (subsequent) phosphatidylserine exposure and hyporeactivity. Conclusion: These data link energy metabolism failure in platelets from COVID-19 patients with a prothrombotic platelet phenotype with features matching cell death.

5.
Microbiol Spectr ; 11(6): e0302923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37975661

RESUMO

IMPORTANCE: Even though the coronavirus disease 2019 (COVID-19) pandemic is slowly developing into a conventional infectious disease, the long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection are still not well understood. One of the problems is that many COVID-19 cases develop acute kidney injuries. Still, it is heavily debated whether SARS-CoV-2 virus enters and actively replicates in kidney tissue and if SARS-CoV-2 virus particles can be detected in kidney during or post-infection. Here, we demonstrated that nucleocapsid N protein was detected in kidney tubular epithelium of patients that already recovered form COVID-19. The presence of the abundantly produced N protein without signs of viral replication could have implications for the recurrence of kidney disease and have a continuing effect on the immune system.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas do Nucleocapsídeo , Replicação Viral , Epitélio
6.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36757797

RESUMO

Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd-induced lipid substrates that define Gaucher's disease, Wolman's disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis-induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Terpenos , Nucleosídeos , Macrófagos/microbiologia , Lipídeos , Lisossomos
7.
Cell Biochem Funct ; 40(8): 914-925, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36169099

RESUMO

ATP8B1 is a phospholipid flippase and member of the type 4 subfamily of P-type ATPases (P4-ATPase) subfamily. P4-ATPases catalyze the translocation of phospholipids across biological membranes, ensuring proper membrane asymmetry, which is crucial for membrane protein targeting and activity, vesicle biogenesis, and barrier function. Here we have investigated the role of ATP8B1 in the endolysosomal pathway in macrophages. Depletion of ATP8B1 led to delayed degradation of content in the phagocytic pathway and in overacidification of the endolysosomal system. Furthermore, ATP8B1 knockdown cells exhibited large multivesicular bodies filled with intraluminal vesicles. Similar phenotypes were observed in CRISPR-generated ATP8B1 knockout cells. Importantly, induction of autophagy led to accumulation of autophagosomes in ATP8B1 knockdown cells. Collectively, our results support a novel role for ATP8B1 in lysosomal fusion in macrophages, a process crucial in the terminal phase of endolysosomal degradation.


Assuntos
Adenosina Trifosfatases , Fosfolipídeos , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Lisossomos
8.
PLoS One ; 17(7): e0270205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797379

RESUMO

Resistance plasmids are crucial for the transfer of antimicrobial resistance and thus form a matter of concern for veterinary and human healthcare. To study plasmid transfer, foodborne Escherichia coli isolates harboring one to five known plasmids were co-incubated with a general recipient strain. Plasmid transfer rates under standardized conditions varied by a factor of almost 106, depending on the recipient/donor strain combination. After 1 hour transconjugants never accounted for more than 3% of the total number of cells. Transconjugants were formed from 14 donors within 1 hour of co-incubation, but in the case of 3 donors 24 hours were needed. Transfer rates were also measured during longer co-incubation, between different species and during repeated back and forth transfer. Longer co-incubation resulted in the transfer of more types of resistance. Maximum growth rates of donor strains varied by a factor of 3. Donor strains often had higher growth rates than the corresponding transconjugants, which grew at the same rate as or slightly faster than the recipient. Hence, possessing one or more plasmids does not seem to burden the harboring strain metabolically. Transfer was species specific and repeated transfer of one plasmid did not result in different transfer rates over time. Transmission Electron microcopy was used to analyze the morphology of the connection between co-incubated strains. Connection by more pili between the cells resulted in better aggregate formation and corresponded with higher transfer rates.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos , Conjugação Genética , Humanos , Carne , Plasmídeos/genética
9.
Microbiol Spectr ; 10(1): e0127121, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171025

RESUMO

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak and prompted an enormous research effort. Still, the subcellular localization of the coronavirus in lungs of COVID-19 patients is not well understood. Here, the localization of the SARS-CoV-2 proteins is studied in postmortem lung material of COVID-19 patients and in SARS-CoV-2-infected Vero cells, processed identically. Correlative light and electron microscopy on semithick cryo-sections demonstrated induction of electron-lucent, lipid-filled compartments after SARS-CoV-2 infection in both lung and cell cultures. In lung tissue, the nonstructural protein 4 and the stable nucleocapsid N-protein were detected on these novel lipid-filled compartments. The induction of such lipid-filled compartments and the localization of the viral proteins in lung of patients with fatal COVID-19 may explain the extensive inflammatory response and provide a new hallmark for SARS-CoV-2 infection at the final, fatal stage of infection. IMPORTANCE Visualization of the subcellular localization of SARS-CoV-2 proteins in lung patient material of COVID-19 patients is important for the understanding of this new virus. We detected viral proteins in the context of the ultrastructure of infected cells and tissues and discovered that some viral proteins accumulate in novel, lipid-filled compartments. These structures are induced in Vero cells but, more importantly, also in lung of patients with COVID-19. We have characterized these lipid-filled compartments and determined that this is a novel, virus-induced structure. Immunogold labeling demonstrated that cellular markers, such as CD63 and lipid droplet marker PLIN-2, are absent. Colocalization of lipid-filled compartments with the stable N-protein and nonstructural protein 4 in lung of the last stages of COVID-19 indicates that these compartments play a key role in the devastating immune response that SARS-CoV-2 infections provoke.


Assuntos
COVID-19/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/análise , Pulmão/metabolismo , Nucleocapsídeo/análise , SARS-CoV-2 , Adolescente , Idoso , Animais , COVID-19/patologia , Pré-Escolar , Chlorocebus aethiops , Surtos de Doenças , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Pulmão/citologia , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Nucleocapsídeo/metabolismo , Coelhos , SARS-CoV-2/ultraestrutura , Células Vero/virologia
10.
ACS Appl Mater Interfaces ; 14(4): 5066-5079, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041392

RESUMO

Microglia are the major innate immune cells in the brain and are essential for maintaining homeostasis in a neuronal microenvironment. Currently, a genetic tool to modify microglial gene expression in specific brain regions is not available. In this report, we introduce a tailor-designed method that uses lipid and polymer hybridized nanoparticles (LPNPs) for the local delivery of small interfering RNAs (siRNAs), allowing the silencing of specific microglial genes in the hypothalamus. Our physical characterization proved that this LPNP-siRNA was uniform and stable. We demonstrated that, due to their natural phagocytic behavior, microglial cells are the dominant cell type taking up these LPNPs in the hypothalamus of rats. We then tested the silencing efficiency of LPNPs carrying a cluster of differentiation molecule 11b (CD11b) or Toll-like receptor 4 (TLR4) siRNA using different in vivo and in vitro approaches. In cultured microglial cells treated with LPNP-CD11b siRNA or LPNP-TLR4 siRNA, we found a silencing efficiency at protein expression levels of 65 or 77%, respectively. In line with this finding, immunohistochemistry and western blotting results from in vivo experiments showed that LPNP-CD11b siRNA significantly inhibited microglial CD11b protein expression in the hypothalamus. Furthermore, following lipopolysaccharide (LPS) stimulation of cultured microglial cells, gene expression of the TLR4 downstream signaling component myeloid differentiation factor 88 and its associated cytokines was significantly inhibited in LPNP-TLR4 siRNA-treated microglial cells compared with cells treated with LPNP-scrambled siRNA. Finally, after LPNP-TLR4 siRNA injection into the rat hypothalamus, we observed a significant reduction in microglial activation in response to LPS compared with the control rats injected with LPNP-scrambled siRNA. Our results indicate that LPNP-siRNA is a promising tool to manipulate microglial activity locally in the brain and may serve as a prophylactic approach to prevent microglial dysfunction-associated diseases.


Assuntos
Portadores de Fármacos/química , Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Nanopartículas/química , RNA Interferente Pequeno/farmacologia , Animais , Antígeno CD11b/antagonistas & inibidores , Antígeno CD11b/genética , Lipídeos/química , Masculino , Poliésteres/química , Polietilenoglicóis/química , Ratos Wistar , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética
11.
Atherosclerosis ; 339: 35-45, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847419

RESUMO

BACKGROUND AND AIMS: The endothelium plays a major role in atherosclerosis, yet the endothelial plaque surface is a largely uncharted territory. Here we hypothesize that atherosclerosis-driven remodeling of the endothelium is a dynamic process, involving both damaging and regenerative mechanisms. METHODS: Using scanning electron microscopy (SEM) and immuno-SEM, we studied endothelial junction ultrastructure, endothelial openings and immune cell-endothelium interactions in eight apoe-/- mice and two human carotid plaques. RESULTS: The surface of early mouse plaques (n = 11) displayed a broad range of morphological alterations, including junctional disruptions and large transcellular endothelial pores with the average diameter between 0.6 and 3 µm. The shoulder region of advanced atherosclerotic lesions (n = 7) had a more aggravated morphology with 8 µm-size paracellular openings at two-fold higher density. In contrast, the central apical surface of advanced plaques, i.e., the plaque body (n = 7), displayed endothelial normalization, as shown by a significantly higher frequency of intact endothelial junctions and a lower incidence of paracellular pores. This normalized endothelial phenotype correlated with low immune cell density (only 5 cells/mm2). The human carotid plaque surface (n = 2) displayed both well-organized and disrupted endothelium with similar features as described above. In addition, they were accompanied by extensive thrombotic areas. CONCLUSIONS: Our study unveils the spectrum of endothelial abnormalities associated with the development of atherosclerosis. These were highly abundant in early lesions and in the shoulder region of advanced plaques, while normalized at the advanced plaque's body. Similar endothelial features were observed in human atherosclerotic plaques, underlining the versatility of endothelial transformations in atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Artérias Carótidas , Endotélio , Camundongos , Microscopia Eletrônica de Varredura
12.
Nat Chem Biol ; 15(9): 889-899, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427817

RESUMO

Mycobacterium tuberculosis (Mtb) is the world's most deadly pathogen. Unlike less virulent mycobacteria, Mtb produces 1-tuberculosinyladenosine (1-TbAd), an unusual terpene nucleoside of unknown function. In the present study 1-TbAd has been shown to be a naturally evolved phagolysosome disruptor. 1-TbAd is highly prevalent among patient-derived Mtb strains, where it is among the most abundant lipids produced. Synthesis of TbAd analogs and their testing in cells demonstrate that their biological action is dependent on lipid linkage to the 1-position of adenosine, which creates a strong conjugate base. Furthermore, C20 lipid moieties confer passage through membranes. 1-TbAd selectively accumulates in acidic compartments, where it neutralizes the pH and swells lysosomes, obliterating their multilamellar structure. During macrophage infection, a 1-TbAd biosynthesis gene (Rv3378c) confers marked phagosomal swelling and intraphagosomal inclusions, demonstrating an essential role in regulating the Mtb cellular microenvironment. Although macrophages kill intracellular bacteria through phagosome acidification, Mtb coats itself abundantly with antacid.


Assuntos
Antiácidos/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Lisossomos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Mycobacterium kansasii/genética , Prevalência
13.
ACS Nano ; 13(12): 13759-13774, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31268670

RESUMO

Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.


Assuntos
Artérias/patologia , Aterosclerose/metabolismo , Aterosclerose/terapia , Progressão da Doença , Endotélio Vascular/patologia , Nanopartículas/química , Animais , Aterosclerose/patologia , Entropia , Európio/química , Camundongos , Probabilidade , Temperatura
14.
Stroke ; 50(6): 1590-1594, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31136287

RESUMO

Background and Purpose- We developed a rat model of silent brain infarcts based on microsphere infusion and investigated their impact on perfusion and tissue damage. Second, we studied the extent and mechanisms of perfusion recovery. Methods- At day 0, 15 µm fluorescent microspheres were injected into the right common carotid artery of F344 rats. At days 1, 7, or 28, the brain was removed, cut in 100-µm cryosections, and processed for immunofluorescent staining and analysis. Results- Injection of microspheres caused mild and transient damage to the treated hemisphere, with a decrease in perfused capillary volume at day 1, as compared with the untreated hemisphere. At day 1 but not at days 7 and 28, we observed IgG staining outside of the vessels, indicating vessel leakage. All microspheres were located inside the lumen of the vessels at day 1, whereas the vast majority (≈80%) of the microspheres were extravascular at day 7, and 100% at day 28. This was accompanied by restoration of perfused capillary volume. Conclusions- Microspheres cause mild and transient damage, and effective extravasation mechanisms exist in the brain to clear microsized emboli from the vessels.


Assuntos
Infarto Encefálico , Microesferas , Animais , Infarto Encefálico/induzido quimicamente , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Endogâmicos F344
15.
Front Microbiol ; 9: 2034, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233521

RESUMO

Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized that blocking the recovery from the condensed state could weaken the bacteria. We showed that after inducing DNA condensation, and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis did not replicate and its survival was significantly reduced. Our work demonstrates that agents that block recovery from the condensed state of the nucleoid can be exploited as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and drugs interfering with recovery from DNA condensation constitutes a novel approach for treatment of tuberculosis and related bacterial infections.

16.
Arterioscler Thromb Vasc Biol ; 38(8): 1772-1784, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29930006

RESUMO

Objective- Nbeal2-/- mice, a model of human gray platelet syndrome, have reduced neutrophil granularity and impaired host defense against systemic Staphylococcus aureus infection. We here aimed to study the role of Nbeal2 deficiency in both leukocytes and platelets during gram-negative pneumonia and sepsis. Approach and Results- We studied the role of Nbeal2 in platelets and leukocytes during murine pneumonia and sepsis by Klebsiella pneumoniae. Apart from platelet α-granule deficiency and reduced neutrophil granularity, also monocyte granularity was reduced in Nbeal2-/- mice, whereas plasma levels of MPO (myeloperoxidase), elastase, NGAL (neutrophil gelatinase-associated lipocalin), and MMP-9 (matrix metalloproteinase 9), and leukocyte CD11b expression were increased. Nbeal2-/- leukocytes showed unaltered in vitro antibacterial response and phagocytosis capacity against Klebsiella, and unchanged reactive nitrogen species and cytokine production. Also during Klebsiella pneumonia and sepsis, Nbeal2-/- mice had similar bacterial growth in lung and distant body sites, with enhanced leukocyte migration to the bronchoalveolar space. Despite similar infection-induced inflammation, organ damage was increased in Nbeal2-/- mice, which was also seen during endotoxemia. Platelet-specific Nbeal2 deficiency did not influence leukocyte functions, indicating that Nbeal2 directly modifies leukocytes. Transfusion of Nbeal2-/- but not of Nbeal2+/+ platelets into thrombocytopenic mice was associated with bleeding in the lung but similar host defense, pointing at a role for platelet α-granules in maintaining vascular integrity but not host defense during Klebsiella pneumosepsis. Conclusions- These data show that Nbeal2 deficiency-resulting in gray platelet syndrome-affects platelets, neutrophils, and monocytes, with intact host defense but increased organ damage during gram-negative pneumosepsis.


Assuntos
Plaquetas/metabolismo , Proteínas Sanguíneas/deficiência , Síndrome da Plaqueta Cinza/metabolismo , Infecções por Klebsiella/metabolismo , Klebsiella pneumoniae/patogenicidade , Insuficiência de Múltiplos Órgãos/metabolismo , Pneumonia Bacteriana/metabolismo , Sepse/metabolismo , Animais , Plaquetas/microbiologia , Proteínas Sanguíneas/genética , Antígeno CD11b/sangue , Modelos Animais de Doenças , Feminino , Síndrome da Plaqueta Cinza/sangue , Síndrome da Plaqueta Cinza/genética , Interações Hospedeiro-Patógeno , Infecções por Klebsiella/sangue , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Lipocalina-2/sangue , Masculino , Metaloproteinase 9 da Matriz/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/microbiologia , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/microbiologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Elastase Pancreática/sangue , Peroxidase/sangue , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Transfusão de Plaquetas , Pneumonia Bacteriana/sangue , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/microbiologia , Sepse/sangue , Sepse/genética , Sepse/microbiologia
17.
Acta Neuropathol Commun ; 6(1): 36, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724241

RESUMO

The complement system is a key driver of neuroinflammation. Activation of complement by all pathways, results in the formation of the anaphylatoxin C5a and the membrane attack complex (MAC). Both initiate pro-inflammatory responses which can contribute to neurological disease. In this study, we delineate the specific roles of C5a receptor signaling and MAC formation during the progression of experimental autoimmune encephalomyelitis (EAE)-mediated neuroinflammation. MAC inhibition was achieved by subcutaneous administration of an antisense oligonucleotide specifically targeting murine C6 mRNA (5 mg/kg). The C5a receptor 1 (C5aR1) was inhibited with the C5a receptor antagonist PMX205 (1.5 mg/kg). Both treatments were administered systemically and started after disease onset, at the symptomatic phase when lymphocytes are activated. We found that antisense-mediated knockdown of C6 expression outside the central nervous system prevented relapse of disease by impeding the activation of parenchymal neuroinflammatory responses, including the Nod-like receptor protein 3 (NLRP3) inflammasome. Furthermore, C6 antisense-mediated MAC inhibition protected from relapse-induced axonal and synaptic damage. In contrast, inhibition of C5aR1-mediated inflammation diminished expression of major pro-inflammatory mediators, but unlike C6 inhibition, it did not stop progression of neurological disability completely. Our study suggests that MAC is a key driver of neuroinflammation in this model, thereby MAC inhibition might be a relevant treatment for chronic neuroinflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Complexo de Ataque à Membrana do Sistema Complemento/antagonistas & inibidores , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Encefalite/tratamento farmacológico , Encefalite/etiologia , Encefalomielite Autoimune Experimental/complicações , Animais , Anti-Inflamatórios/química , Axônios/efeitos dos fármacos , Axônios/patologia , Axônios/ultraestrutura , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/química , Modelos Animais de Doenças , Exorribonucleases/uso terapêutico , Masculino , Camundongos , Microscopia Eletrônica , Modelos Biológicos , Peptídeos Cíclicos/uso terapêutico , RNA Mensageiro/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/metabolismo , Sinaptofisina/metabolismo , Sinaptofisina/ultraestrutura
18.
J Extracell Vesicles ; 4: 29260, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26563735

RESUMO

Because procedures of handling and storage of body fluids affect numbers and composition of extracellular vesicles (EVs), standardization is important to ensure reliable and comparable measurements of EVs in a clinical environment. We aimed to develop standard protocols for handling and storage of human body fluids for EV analysis. Conditions such as centrifugation, single freeze-thaw cycle, effect of time delay between blood collection and plasma preparation and storage were investigated. Plasma is the most commonly studied body fluid in EV research. We mainly focused on EVs originating from platelets and erythrocytes and investigated the behaviour of these 2 types of EVs independently as well as in plasma samples of healthy subjects. EVs in urine and saliva were also studied for comparison. All samples were analysed simultaneously before and after freeze-thawing by resistive pulse sensing, nanoparticle tracking analysis, conventional flow cytometry (FCM) and transmission (scanning) electron microscopy. Our main finding is that the effect of centrifugation markedly depends on the cellular origin of EVs. Whereas erythrocyte EVs remain present as single EVs after centrifugation, platelet EVs form aggregates, which affect their measured concentration in plasma. Single erythrocyte and platelet EVs are present mainly in the range of 100-200 nm, far below the lower limit of what can be measured by conventional FCM. Furthermore, the effects of single freeze-thaw cycle, time delay between blood collection and plasma preparation up to 1 hour and storage up to 1 year are insignificant (p>0.05) on the measured concentration and diameter of EVs from erythrocyte and platelet concentrates and EVs in plasma, urine and saliva. In conclusion, in standard protocols for EV studies, centrifugation to isolate EVs from collected body fluids should be avoided. Freezing and storage of collected body fluids, albeit their insignificant effects, should be performed identically for comparative EV studies and to create reliable biorepositories.

19.
Artigo em Inglês | MEDLINE | ID: mdl-25279113

RESUMO

BACKGROUND: Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. AIM: To develop a single-step protocol to isolate vesicles from human body fluids. METHODS: Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. RESULTS: Fractions 9-12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18-20 (32%±2 of total), and protein in fractions 19-21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9-12, with an 8-fold and 70-fold enrichment compared to HDL and protein. CONCLUSIONS: SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles.

20.
Artigo em Inglês | MEDLINE | ID: mdl-24511372

RESUMO

BACKGROUND: Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. METHODS: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS) and size exclusion chromatography coupled with dynamic light scattering detection. RESULTS: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. CONCLUSION: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...